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A family of order-reducing transformations applicable to a wide class of differential eigen- 
value problems with nonlinear parameter dependence is developed. The highest or the first few 
highest powers of the parameter are removed, leading to the increased efficiency of the global 
numerical eigenvalue-search scheme of choice (taken to be spectral in this work). For unboun- 
ded-domain problems this cost reduction is accompanied by an increased accuracy and 
increased searching capability of the spectral technique. Applications to the spatial stability of 
the Orr-Sommerfeld problems for channel, boundary-layer, and wake flows are addressed 
explicitly. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

In this paper a series of transformations of the dependent variable of differential 
eigenvalue problems with non-linear parameter dependence are presented. These 
transformations are applicable to a wide class of problems in which the range of the 
independent variable may be bounded or unbounded. The eigenvalues will be 
invariant under such transformations, as will be shown. The highest power (or the 
first few highest powers) of the eigenvalue will, however, be reduced in the new for- 
mulation. This result shall be referred to as a “reduction in order” of the eigenvalue 
throughout this work. Furthermore, the term “nonlinear” shall denote the non- 
linearity in the parameter and not of the operator. These reductions do afford some 
analytic simplifications in cases where the solution may so be obtained. However, 
most problems of interest require a numerical search for locating their eigenvalues 
in the complex plane of the parameter. It is for this latter class that the 
ramifications of the technique are greatest. The technique of choice in this paper is 
one due to Bridges and Morris ([l, 21). In bounded domains, it consists of 
representing the eigenfunction in terms of a truncated Chebyshev series and deter- 
mining the eigenvalues from the linear algebraic problem governing the coefficients 
of the Chebyshev polynomials. Much detail has been provided in [ 11, with exten- 
sions to the unbounded case in [2] where use is made of an algebraic mapping of 
the [0, co) interval onto [ - 1, 1) prior to the Chebyshev series expansion. 
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The goal of the present endeavor is not to develop a new eigenvalue search 
technique, but rather to advocate a preliminary analytical treatment of the 
equations which results in substantial cost reductions regardless of the particular 
global scheme used. For sake of definiteness and illustration, the technique will be 
applied to the problem of linear spatial stability of laminar flows. The governing 
equation there is the Orr-Sommerfeld equation wherein the eigenvalue appears up 
to and including the fourth power. It will be shown that the operation count can be 
reduced by a factor of eight. In the case of unbounded flows, this reduction in cost 
is accompanied by an increase in accuracy of the higher modes, for a given number 
of Chebyshev polynomials. The increased accuracy is a result of the increased area 
of the complex plane which is searched by the scheme, as a result of the transfor- 
mation. 

Through these transformations, all of the spatial eigenvalues may be obtained, 
whereas before, only a subset of the complex plane could be searched. Application 
of the search to the untransformed Orr-Sommerfeld equation in unbounded 
domain would yield the near neutral modes directly. The least stable mode could 
then be tracked from this mode [2]. For most practical purposes the above men- 
tioned modes are all that are needed. However, when an arbitrary disturbance is to 
be expanded in terms of spatially evolving modes [3], then all the eigenvalues are 
needed, hence the necessity of the transformations. 

To motivate the approach, an illustrative example is provided in Section 2. In 
Section 3 the technique is formally introduced in terms of general linear operators 
in bounded domains. The application to the spatial stability of channel flow is also 
included in Section 3. In Section 4 the spatial stability of unbounded shear flows is 
addressed and the technique is generalized to unbounded domains. 

2. A SIMPLE EXAMPLE 

Let us consider the following differential eigenvalue problem in the interval 
YE [-I, 11, reproduced from [l]: 

0’4 - 2ao Dq5 + a’4 = 0, (1) 

4(-1)=4(l)=& (2) 

where D G d/dy and o is a prescribed parameter. For any given o, the eigenvalues a 
and their corresponding eigenfunctions, 4, are sought. An exact solution exists for 
this simple case and is given in [ 11. 

To find the values of TV numerically, 4 is expanded in a truncated Chebyshev 
series: 

(3) 
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where prime denotes that the first term of (3) has to be divided by two. T,(y) is the 
nth order Chebyshev polynomial of the first kind. The truncation of the series is 
equivalent to solving a perturbation of (1). This method is known as Lanczo’s tau 
method. The perturbation, for (1) integrated twice, has the form 

TI TN+ I(Y) + ~2 TN+~(Y). (4) 

t’s are a measure of error in the solution. One can easily show their magnitude in 
this problem to be O(cl/N), so that the resolution of the higher modes requires 
larger N. 

Upon substitution of (3) into (1) and (2), the differential eigenvalue problem 
reduces to a nonlinear algebraic eigenvalue problem with the eigenvector a) being 
the vector of the expansion coefficients, a,, for 4 as defined in (3): 

D2(cx) ad = 0. (5) 

Dz is a lambda matrix [4] of degree two, which may be written as 

[C2a2+C,a+C,] a,=O, (6) 

where the Ci (i= 1,2,3) are independent of a. The eigenvalues correspond to the 
values of a which render the determinant of D*(a) zero. System (6) may be trans- 
formed into one wherein the eigenvalue appears linearly, but the size of the system 
is doubled [ 11. Using a QR or QZ algorithm to find the eigenvalues of this larger 
system requires an amount of work proportional to 0( [2N13). 

Now going back to (1) and (2), consider the following change of the independent 
variable: 

where A is a constant to be determined. Substitution of (7) into (1) and (2) yields 

[D2+2cr(A-o)D+(A2-22wA+l)a2]II/=O (8) 

II/(-l)=+(l)=0 (9) 

as the governing equation for $. The fact that the exponential function has no 
zeroes in the finite a-plane ensures a nontrivial II/ whenever 4 is nontrivial. 
Therefore, the eigenvalues are invariant under the proposed transformation. A is 
now chosen so that the coefftcient of a2 in (8) is zero. There are two solutions for A: 

A=wf(02-1)1’2~~+C(W). (10) 

Either choice is suitable. The resulting form of (8) is 

[D’ + 2C(o) aD] $ = 0. (11) 
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The form of (11) is much simpler than (1). When IJ~ is expanded in a finite 
Chebyshev series, (11) reduces to the linear algebraic eigenvalue problem 

D,(a) alL = 0, (12) 

where D, is now a lambda matrix of degree one. As a result there is no need to 
double the size of the system, QR or QZ methods being applicable in the present 
form. The operation count in this case is only proportional to U(N3). Therefore, in 
this simple example, using the transformation (7) the operation count was reduced 
by a factor of eight. If one checks r,, it is still O(cr/N), so that no amount of 
accuracy is compromised. 

In the next section we shall show where and why such transformations are 
applicable. 

3. GENERALIZATION ON FINITE INTERVALS 

Consider the following general eigenvalue problem in operator form, with 
YE [a, bl: 

L,;AY; a) = 0 (13) 

%ildk?; a) = lq;,(b(b; a) = 0, (14) 

where 

N N-i 

L- c 1 a&) cliDi. (15) 

M’ and M2 are similar in form to L except that they are of one lower differential 
order. It is helpful to consider the following decomposition of L: 

i=O i=O j=O 

=Lb+L”. (16b) 

Lb is the “balanced” portion of L, namely the terms in which the sum of the power 
of the eigenvalue and the order of the derivative (to be referred to as the index) is 
equal to the order of the operator. L, is the unbalanced portion of L which is 
formally L-L,. In order for the proposed transformations to be applicable, L has 
to satisfy several conditions: 

(i) ~~=-o’ C,“_i+l laN-i,i'uN-j,jl ZO f or all YE [a, 61, so that there are 
always at least two nonzero terms. 

(ii) uON # 0 for some y E [a, 61, so that aN is present in L. 
(iii) coefficients of L, have no singularities for all YE [a, 61. 
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Furthermore, we assume that L is “irreducible” in a, namely that the powers of GI 
which appear in L are prime with respect to each other. This last requirement is just 
to ensure that no simple redefinition of c1 would be able to trivially reduce the 
power of a in the operator. As an aside, let us mention that this definition of L, in 
general, may preclude the studying of problems which address non-isotropicity 
effects. There the index can be larger than the differential order for L or Mi 
(i = 1, 2). The transformation to be considered is a generalization of (7): 

4~; a) = KY; Co w 
L 
a s’ i(Y) 4’ 1 (17) 

Substitution of (17) into Eq. (13), and setting the coefficient of c?’ equal to zero, 
yields an Nth order polynomial equation for i(y) in the form 

hJxJ41 = 0 

with P,,,( .) = Cy=“=, pi(y)( .)‘= C;“_, ai,N- i(y)( .)i. P, is a generalization of the 
characteristic polynomial for Lb, when the latter has non-constant coefficients. 
Conditions (i) and (iii) above ensure that there exists at least one root of P, which 
is an analytic function of y on the whole interval [a, b]. In what follows, attention 
is restricted to the case uNO = 1 and aON # 0 on [a, b], which is adequate for most 
problems of interest. As a result of this restriction, pN = 1 and there are N possible 
solutions for (18), any one of which would be a sufficient choice. One possible 
approach to solving (18) is to locate a zero of P, with y set equal to a, one of the 
end points. The following expression, which is obtained by differentiating (18) with 
respect to y, allows one to track this zero throughout the range of y: 

CL P;(Y) i”(Y) 
5’(y) = - c,“= 1 V,(Y) i”- ‘(Y) 

The right-hand side of (19) will be well defined provided that the chosen zero is a 
simple zero of P, throughout the range of y. In other words the trajectory of this 
zero in the complex c-plane as y goes from a to b, is not crossed by that of any 
other zeroes, at the same value of y. 

The original problem, defined by (13) and (14) now reduces to 

&,l(/b; Co = 0 (20) 

fG~.,$(u; a) = 0; &$,tj(b; a) = 0, (21) 

where 2, a’, and fi2 have the same form as their counterparts without the : In 
particular, 

N N-i 

2 1 1 au(y) cc’@. 
i=lJ j=O 

(22) 
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The effect of the transformation though, has been to set the coefficient of txN equal 
to zero: 

u&y = 0. (23) 

Therefore, using a Chebyshev expansion scheme similar to that of Section 2, and 
solving for the eigenvalues of the discretized system, requires at most [(N- 1)/N13 
times work as that of the untransformed problem. The amount of savings would be 
greater if Lb were factorizable. Before considering this case, one comment with 
regard to the nonfactorizable L,‘s is in order. As N increases the amount of savings 
becomes less and the solution of P, could become difficult. For those cases the 
application of the technique might not be as desirable. However, for most eigen- 
value problems arising from physical problems, N is such that the technique should 
prove useful. 

Before closing this section, let us discuss the conditions on L for which the above 
transformation yields higher reductions in cost than [(N - 1)/N13. If L, is 
factorizable into k factors as 

L,=fj L; (24) 
i= I 

then the implementation of the transformation becomes much simpler, since Lls are 
simpler than L, (recall the irreducibility of Lb). If it also happens that the chosen 
factor has a multiplicity higher than one, say m, then the reduction of the highest 
power of tl in L, is by m. In such a case one should consider L,, since the dominant 
power of CI may now lie in L, such that the actual reduction of the power of a is less 
than m. In cases where the Lx-content of L, is markedly subdominant to that of L,, 
or that L, itself is reduced in a under the action of the proposed transformation, 
then the amount of savings in costs approaches [(N - m)/N13, which for a 
reasonable N is quite substantial. One point has to be made with regard to the L;s, 
the factors of Lb. Since L, is a “balanced” operator, then so will be the Lis (with 
lower indices, of course). The imbalance of Lis would lead to an imbalance of L, 
which would be a contradiction. Use will be made of this observation in the 
discussion of problems with unbounded range of the independent variable. To 
illustrate the usefulness of the technique, the following example is provided. 

3.1. Linear Spatial Stability of Channel Flows 

Consider the spatial stability of small disturbances introduced in a channel flow, 
with YE [ - 1, 11, and XE (-co, co). The mean flow, U(y), has the Poiseuille 
profile. The governing equation is the Orr-Sommerfeld equation 

f(D2-u2)2-iR[ (au-w)(D2-a2)-au”]}cj=o, (25) 

with 
(b=Dj=o on y= +l, (26) 
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where the streamfuncton of the small disturbances is given as 

(27) 

R is the Reynolds number based on the channel half-depth. o is the real frequency, 
which is fixed for spatial studies. Prime indicates differentiation with respect to the 
argument. The instability or stability is governed by the sign of the imaginary part 
of a. Further details may be found in texts on hydrodynamic stability (e.g., [S]). In 
their present form, (25) and (26) comprise a differential eigenvalue problem with a4 
as the highest power of the eigenvalue, a. If the Chebyshev polynomials are utilized 
again, and NC of them are retained prior to the truncation, then the operation 
count to find the eigenvalues of the discretized system will be proportional to 

0(4 x NC)3. (28) 

The following transformation of the independent variable suggests itself: 

4bs a) = KY; a) ew( -0ly). (29) 

The formulation of the problem in terms of I,+ becomes 

{D*(l)-2a)*-iR[(aU-w)(D--2a)D-aU”]}$=O (30) 

lj(&l)=D$(+l)=o. (31) 

The highest power of a is reduced by two, because the balanced portion of the 
Orr-Sommerfeld operator is factorizable with multiplicity two, and the same factors 
appear in the dominant part of the unbalanced operator, with multiplicity one. 

If the numerics are performed now, the amount of work will be proportional to 

0(2 x NC)3, (32) 

which in comparison with (28) represents a savings of 87.5 %, namely eight times 
faster, for the very same global numerical technique. The ramifications in the case 
of unbounded flows are even more spectacular, as will be demonstrated in the next 
section. 

4. EXTENSION TO UNBOUNDED DOMAINS 

Results of Section 3, as they stand, can be generalized to the cases where the 
range of the independent variable is [0, co). However, what will be shown hereafter 
is that if L satisfies some more specific conditions, then the reductions in cost will 
be accompanied by an immense increase in accurracy for higher modes. In order to 
develop the ideas, first an example, namely the Orr-Sommerfeld equation in the 
unbounded domain, is discussed. With this example behind us, the results are then 
generalized and some sufficiency conditions on L are stated such that these trans- 
formations will attain their utmost usefulness. 
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4.1. Linear Spatial Stability of Unbounded Shear Flows 

The streamfunction of small amplitude perturbations to the mean flow for flow 
over a rigid flat plate or in a wake, if the locally parallel-flow assumption is 
invoked, evolves according to the Orr-Sommerfeld equation, with a large Reynolds 
number based on some displacement length scale, 

{(D2-a2)2-iR[(aU-~)(D2-a2)-aU”]} q5=0 
subject to 

4, W-+0 as y-co, 

and one of the following: 

4(O) = W(O) = 0, 

b(O) = D’qS(O) = 0, 
or 

D&(O) = D3q5(0) = 0. 

(33) 

(34) 

W-4 

WI 

(35c) 

Conditions (35a-35c) correspond to the no-slip condition for the flat plate, or odd 
or even conditions on the centerline for wake flow, respectively. Keller [6] has 
proposed a “correct” way of imposing the boundary conditions at infinity, should 
these conditions be imposed at a large but finite value of y. In the present case an 
algebraic mapping from y E [0, co) to z E [ - 1, 1) is employed which then allows for 
subsequent Chebyshev expansion: 

z=(Y-w(Y+~)~ (36) 

where 1 is an 0( 1) tuning parameter. As a result, the conditions (34) are truly 
imposed at infinity, and hence are correct as they stand. The numerical scheme to 
find the eigenvalues of (33) is clearly developed in [2], and it is shown that the 
conditions 

I$, Dq5 bounded asy+cc (37) 

are also covered by the scheme. This means that some mildly oscillatory continuous 
modes close to the the branch points are also recovered by the technique. However, 
as the continuous modes, in the spatial problem, become highly oscillatory upon 
moving along the branch cuts away from the branch points, “most” of these modes 
cannot be resolved. For details of the scheme the reader is referred to [2]. One 
point needs attention, however. Algebraic mapping of (36) has a metric (m(z)) 
which vanishes like a double zero as z approaches 1. This, in general, would cause 
some ambiguity in this manner in which derivative boundary conditions at z = 1 
should be prescribed, since 

4 4 -=rn(z) dz 
4 

(38) 



480 HOSSEIN HAJ-HARIRI 

so that (34) is satisfied even when dd/dz is nonzero. The resolution proposed in [2] 
is to define a new variable, t, as 

5 = m(z) d#dz. (39) 

The derivative boundary condition at z = 1 can now simply be stated as t: = 0. 
A typical mode of the Orr-Sommerfeld problem has a tail which exhibits 

exponential decay and oscillatory behavior at infinity. In other words, the point at 
infinity (y + 00) is an essential singularity of the solution. When an algebraic map- 
ping is performed on the function, unless the rate of decay is rather high, there will 
be an excessive amount of oscillations in the solution as z --f 1, due to the extreme 
contractions of the intervals approaching the point at infinity. Sufftcient resolution 
of such high oscillations imposes a severe constraint on the minimum number of 
Chebyshev polynomials that are needed in our expansions. Another constraint on 
this number is obtained through insisting on the good resolution of the function 
near z = -1 where the function varies rapidly in the wall and critical layers. These 
constraints shall be referred to as the “first” and “second” constraints, respectively. 
The first constraint seems to be dominant, and a very non-sensitive function of NC, 
the number of polynomials retained. 

Let us assume that an oscillatory function is resolved well, if there are at least 10 
points per wavelength. The discretization points on the interval z E [ - 1, 1) corre- 
spond to the extrema of the NCth Chebyshev polynomial (z,= cos[n( 1 + j/NC)]; 
j = 0, . . . . NC). The effect of the inverse mapping from z to y is to stretch the AZ as 
the point z = 1 is approached. One can find the index j* of zj for which Ay, 

(=Y.j+ I - yj) is equal to one-tenth of the tail wavelength. Upon employing the 
definition (36) and some standard trigonometric identities, the index j* is given 
implicitly by 

T{tan’[n(j*+ 1)/2NC]-tan2[rtj*/2NC]}=~/(5~i). (40) 

Therefore, j* =j*(ai). If j* is such that ldj*l = I#( y,*)l is exponentially small, then 
the loss of resolution will not pose a major problem. In practice however, it seems 
that this norm has to be truly small or otherwise there will be resolution difficulties. 
The magnitude of the function is given (for large y) by 

141 = ev( -ar Y) (41) 

so that I#( yj.)/ = exp( -a, yj.). By insisting on the smallness of Idj.l (E-E), and 
recalling that j* =j*(cr,), an expression is obtained relating a, and ai: a, = a,(ai). 
This is the equation of a line in the complex a-plane. In fact there are two such lines 
which are reflections about the a, axis. These lines pass through the origin, since for 
a, = 0, only modes with ai = 0 can be resolved. The wedge-like region bounded by 
these two lines is what will be referred to as the “validity region”: if an eigenvalue 
resides inside this region, then the proposed numerical scheme will be able to detect 
it. As an aside let us mention that one of the branch cuts in the a plane, 
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corresponding to the downstream-propagating viscous continuous modes, 
penetrates this region of validity. On this branch cut as well as a strip of width 

6 = lc%W~i + WI (42) 

centered on this cut, the tail behavior of the eigenfunction is not exp( -ccy) but 
exp( -py)), where p = [a’ + iR(cc - o)]“’ with positive real part. The numerical 
scheme cannot resolve any discrete eigenvalues which fall on this “invalidity strip,” 
say Sl. In Fig. 1, a sketch of the “validity region” and its dependence on parameters 
NC and E (the smallness of the tail amplitude) is provided. Curve (d) is the locus of 
the downstream-propagating viscous continuous modes for an arbitrary choice of 
R = 500 and w = 0.4. A region of width 6 (42) centered on this line constitutes the 
“invalidity strip.” Curve (b) bounds the validity region to its right, for the choice 
NC = 30 and E = 10e6. If at E = 10e6, NC is increased to 60, curve (a) is obtained; 
and if at NC = 30, E is reduced to 10P8, curve (c) is obtained. Curves (a)-(c) have 
symmetric reflections about the c(,-axis. 

The validity region is a symmetrically disposed wedge about the real axis. Its 
wedge angle increases upon increasing NC. However, the rate is quite slow. The 
reason for the existence of this limited “region of validity” is the existence of an 
essential singularity at the point at infinity of y. Below we shall show that this 
singularity is removable, if an alternative formulation is adopted. 

0.14 

0.12 

0.10 

0.08 
'+ 

tj 

0.06 

0.04 

0.02 

Cd) 

0.00 - 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

FIG. 1. Curves (ak(c) denote the boundary of the region of validity lying to the right of the 
respective curves: (a) NC = 60, E = 10e6; (b) NC = 30, E = 10m6; (c) NC = 30, E = lo-*. (d) is the locus of 
the viscous continuous modes for R = 500 and o = 0.4. a,-axis is the locus of inviscid continuous modes. 
Curves (at(c) have reflections about the a,-axis. 
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In all of the complex a-plane, except for Sl and its upstream propagating coun- 
terpart and the two inviscid branch cuts, the eigenfunction has the following 
asymptotic behavior: 

q5 ‘v exp( -cry). (43) 

A new function $ is defined as 

ICI = 4 exp(cry) (4) 

so that + + 1 at infinity. The conditions to be imposed on Ic/ at infinity are 
D$ = D’$ = 0. The appearance of D’t+b necessitates the introduction of a new coun- 
terpart of l (39) to resolve the ambiguities which arise because of the zero of the 
metric. $ has no singularities at infinity, and the “first” constraint is removed. 
Therefore, the validity region is now the whole of the complex a-plane minus the 
points mentioned at the beginning of the paragraph (say set A). However, there still 
exists the second constraint to be reckoned with. But this is a mild constraint and 
with a reasonable number of polynomials, the region of validity approaches the 
whole of set A. 

Therefore for a given number of polynomials it is now possible to recover many 
more eigenvalues and increase the accuracy of the ones that were resolved using the 
original formulation of the Orr-Sommerfeld equation. However, this is not all that 
the transformation (44) enables us to accomplish. There is a far greater bonus 
involved. The chosen transformation also happens to be the one that reduces the 
Orr-Sommerfeld operator in a by a factor of two. The governing equation for + is 

(D4-4aD3+4a2D2-iR[(aU-m)(D*-2aD)-au”]} rl/=O (45) 

with boundary conditions which also involve a maximum power of a equal to two. 
The global scheme of [2] to find the eigenvalues of this system now only requires Q 
the work of that of the #-system. 

To summarize the above results, the transformation (44) enabled us to resolve far 
more eigenvalues, more accurately, at a reduced cost (4 as before). In the following 
subsection we present some sufficiency criteria which, if satisfied by an operator, 
allow for such dramatic results. 

4.2. A Set of Sufficiency Criteria 

In this section we set forth a set of criteria which if satisfied by an operator, cause 
the accompaniment of the removal of the essential singularity at infinity, by a 
reduction in the computational costs. The conditions are not meant to be the most 
general possible; however, they do appear to encompass the problems of physical 
interest. They are 

(i) The coefficients of L are nonsingular on y E [0, co), and attain constant 
values at infinity. 
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(ii) The coefficient a,,,,, #O so that it may be set equal to 1 without loss of 
generality; and uON does not vanish at infinity. 

(iii) Lb is factorizable into L’L*, where L* is a first-order differential 
operator (with multiplicity ml). L* involves CI explicitly because of (ii)). If L, is 
present, then it, too, should have L* as a factor at least at infinity. 

(iv) The operator is stiff, so that there is a single dominant asymptotic 
behavior of the eigenfunction at infinity, governed by L*. If L, is present then the 
following singular form of the operator, L, would ensure stiffness over most of the 
a-plane 

L=Lb+RL, (R9 1). (46) 

The asymptotic behavior of the eigenfunction will be given by the asymptotic form 
of L*, in all of a-plane, except for regions of width (l/R)” for some n > 0. 

If L satisfies these conditions, then the function 

$=#exp 
[ 

c( s’i(y’)dy’ 1 (47) 

with [ chosen so as to reduce L* throughout y E [0, oo), satisfies an equation which 
is lower in powers of tx than that for 4. The linear dependence of the argument of 
the exponential function in (47) on a is a consequence of L* being a balanced first- 
order operator, which explicitly involves CC. The power of a is reduced by at least 
m3 = min(m1, A + m2), with m2 denoting the reduction of power of c1 in L,, and A 
the original difference in the a-content of L, and L,. The asymptotic behavior of II/ 
is now simple, namely, 

I 

y - m 
* d asym = asym exp a c( y’) dy’ 1 = constant. 

This can be seen by recalling that L* is a first-order balanced differential operator, 
and the coefficient of a in L* approaches a nonzero constant at infinity. 

Therefore, for such an operator, the transformation (47) will result in increased 
scope of the numerical search scheme, increased accuracy of the eigenvalues, and 
decreased costs of computation by [(N- m3)/N13. If (iii) is violated so that L, is 
only factorizable at infinity, then the reduction in cost may not be as appreciable. 

5. CONCLUSIONS 

It was shown that a family of simple transformations may be applied to nonlinear 
differential eigenvalue problems such that the order of the parameter is reduced. 
This reduction, for problems in bounded domains, leads to appreciable amount of 
savings in the number of operations necessary to determine “all” the eigenvalues. 
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For problems in unbounded domains the ramifications of such transformations are 
far greater. Grosch and Orszag [7] mention that for functions with simple behavior 
at infinity, the mapping of the interval results in increased accuracy. However, they 
count this method as not extremely applicable to problems where the functions 
exhibit oscillatory behavior at infinity (due to an essential singularity at infinity). In 
Section 4 it was shown that renormalizing the function by a multiple of its 
asymptotic behavior, for a class of operators, which also includes the Orr- 
Sommerfeld operator, leads to the removal of the singularity at infinity. Also the 
same savings as in the bounded domain case are realized. Therefore, it is possible to 
truly recover all the discrete eigenvalues with higher accuracy (for a given number 
of Chebyshev polynomials), at a reduced cost. 

The application of such transformations (renormalizations) should not be restric- 
ted to eigenvalue problems. They could also be implemented in boundary value 
problems in infinite domains, where the solution exhibits a single dominant 
oscillatory behavior at infinity. The above results should rekindle a new interest in 
the use of mappings introduced in [7], at least for some class of operators. 
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